# An experimental security analysis of an Industrial Robot Controller

**Davide Quarta**, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria Zanchettin, Stefano Zanero

> San José (CA), May 22<sup>nd</sup>, 2017 38th IEEE Symposium on Security and Privacy



DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA







#### **Motivation:** Industry 4.0 Trends



### Motivation: Lack of Awareness

Survey: Robot users vs. system security

50 domain experts—users interviewed: 20 answers

- > 28%\* access control policies not enforced
- > 30% robots accessible over Internet
- > **76%** *never* performed a pentest
- > **50%** not a *realistic* threat

#### How do we define a robot-specific attack?

#### > I/O Accuracy

- Read precise values
- Issue correct/accurate commands
- ≻ Safety
  - Never harm humans
  - Correctly inform operator
  - Integrity
    - No damage to the robot

#### > I/O Accuracy

- Read precise values
- Issue correct/accurate commands

#### > Safety

- Never harm humans
- Correctly inform operator
- Integrity
  - No damage to the robot

#### I/O Accuracy

- Read precise values
- Issue correct/accurate commands

#### > Safety

- Never harm humans
- Correctly inform operator

#### Integrity

■ No **damage** to the robot

#### > I/O Accuracy

Read precise values



#### **Robot-specific Attack:** Digital-borne violation of any of these requirements



No damage to the robot

#### **5 Robot-specific Attacks**

### Attack 1: Control Loop Alteration

Original and unmodified code is executed by the robot



### Attack 2: Tampering with Calibration Parameters

Original and unmodified code is executed by the robot



# Attack 3: Tampering with the Production Logic

2 Attacker alters original code or commands

-



8 No code integrity checks

#### Attack 4 & 5: (Perceived) Robot State Alteration



#### **Custom Physical** Protections, if any (despite regulations)

Fwd:

to

Researchers hijack a 220-pound industrial robotic arm

has long had a robotics program and laboratories with larger robot arms than the one shown. These were the kind of robot arms where the lab floor had a red line to show the swing distance - inside that line and you could be struck by the arm, potentially fatally. Some of the early models were controlled by PCs connected to the corporate network. When powered down, the arms and their controllers were supposed to be safed. However, the COTS computers had a wake-on-LAN function. The internal security folks ran nmap with ping and happened to include the robotics labs' LAN. The PC woke up, automatically ran the robotics control program, and the arm extended to full length and swung around its full arc. This was witnessed by workers in the lab who, fortunately, were behind the red line.

#### From Attacks to Threat Scenarios

- 1) Production Plant Halting
- 2) Production Outcome Alteration
- 3) Physical Damage
- 4) Unauthorized Access
- 5) Ransom requests to disclose micro defects

### **Case Study**

















#### **Industrial Routers**

| Brand           | Exposed<br>Devices | No<br>Authentication | Known<br>Vulnerabilities | New<br>Vulnerabilities |
|-----------------|--------------------|----------------------|--------------------------|------------------------|
| Belden          | 956                |                      | 4                        | 1                      |
| Eurotech        | 160                |                      |                          |                        |
| eWON            | 6,219              | 1,160                | 10                       |                        |
| Digi            | 1,200              |                      | 2                        | 1                      |
| InHand          | 883                |                      |                          |                        |
| Моха            | 12,222             | 2,300                | 30                       | 1                      |
| NetModule       | 886                | 135                  |                          | 1                      |
| Robustel        | 4,491              |                      | 1                        |                        |
| Sierra Wireless | 50,341             | 220                  | 4                        |                        |
| Virtual Access  | 209                |                      | 1                        |                        |
| Welotec         | 25                 |                      |                          |                        |
| Westermo        | 6,081              | 1,200                | 7                        | 2                      |
| TOTAL           | 83,673             | 5,105                | 59                       | 6                      |



#### **Vulnerabilities**

- a. **BOF leading to RCE (**ABBVU-DMRO-124641)
- b. **BOF in FlexPendant (**ABBVU-DMRO-124645)
- c. BOF in /command endpoint (ABBVU-DMRO-128238)
- d. Command Injection (ABBVU-DMRO-124642)
- e. Authentication bypass (ABBVU-DMRO-124644)

#### **Full Controller Exploitation**



#### **Attack POCs**

- 1) Accuracy Violation: PID parameters detuning (Attack 1) DEMO
- 2) Safety Violation: User-Perceived Robot State Alteration (Attack 4)
- 3) **Integrity** Violation: Control-loop alteration (Attack 1)



#### **Attack POCs**

- 1) **Accuracy** Violation: PID parameters detuning (Attack 1)
- 2) **Safety** Violation: User-Perceived Robot State Alteration (Attack 4)
- 3) **Integrity** Violation: Control-loop alteration (Attack 1)

#### POC 2: Safety Violation

#### **Malicious DLL**



#### POC 2: Safety Violation

#### **Malicious DLL**



#### **Attack POCs**

- 1) Accuracy Violation: PID parameters detuning (Attack 1)
- 2) **Safety** Violation: User-Perceived Robot State Alteration (Attack 4)
- 3) **Integrity** Violation: Control-loop alteration (Attack 1)

#### POC 3: Integrity Violation

- > Robot's arm **collapse** on itself
- Motors substantially damaged

Quite a risky POC! Verified with a robotics' expert

#### **Conclusions**: Future Challenges

- > New standards, beyond safety issues
- > Attack detection and hardening
- > Secure collaborative robots
- > (Detailed countermeasures in the paper)



## **Questions?**

**Davide Quarta**, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria Zanchettin, Stefano Zanero

> San José (CA), May 22<sup>nd</sup>, 2017 38th IEEE Symposium on Security and Privacy



DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA



