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Abstract

Industrial robots are complex and customizable machines that can
be programmed with proprietary domain-specific languages. These
languages provide not only movement instructions, but also access
to low-level system resources such as the network or the file system.
Although useful, these features can lead to taint-style vulnerabilities
and can be misused to implement malware—on par with general-
purpose programming languages. In this paper, we analyze the
languages of 8 leading industrial robot vendors, systematize their
technical features, and discuss cases of vulnerable and malicious
uses. We then describe a static source-code analyzer that we created
to analyze robotic programs and discover insecure or potentially
malicious code paths. We focused our proof-of-concept implementa-
tion on two popular languages, namely ABB’s RAPID and KUKA’s
KRL. By evaluating our tool on a set of publicly available programs,
we show that insecure patterns are found in real-world code; there-
fore, static source-code analysis is an effective security screening
mechanism, for example to prevent commissioning insecure or ma-
licious industrial task programs. Finally, we discuss remediation
steps that developers and vendors can adopt to mitigate such issues.

CCS Concepts

• Computer systems organization → Robotics; • Security and

privacy→ Software security engineering;
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1 Introduction

Industrial robots are complex manufacturing machines at the center
of modern factories. Robots are widely interconnected—through
various protocols and technologies—to programmable logic con-
trollers (PLCs), manufacturing execution systems (MESs), vision
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systems, and IT and OT networks in the factory floor. Industrial
robots can be programmed online, using the “teach by showing”
method, or offline, using purpose-built, domain-specific program-
ming languages. These industrial robot programming languages (IR-
PLs) include special instructions to move the robot’s arm(s), as well
as common control-flow instructions and APIs to access low-level
resources. Writing task programs (i.e., the programs that define
the task to execute) in IRPLs is useful to implement custom tasks
and integrate external systems in the production process. IRPLs
provide access—in an almost unconstrained way—to several robot’s
resources like its mechanical arm(s), file-system, network, various
fieldbus protocols, and serial communication.

Recent research looked into the security of industrial machinery,
such as robots. In our previous research [19], we focused on the se-
curity properties of industrial robots, and in a follow-up paper [18],
we mentioned how task programs are part of the attack surface,
showing an example of an application written in a IRPL and vul-
nerable to a “path traversal” issue. Despite this, currently, there are
neither security analysis tools for programs written in IRPLs, nor
security mechanisms to implement resource isolation in common
robotic operating systems (e.g., privilege separation). Furthermore,
the security awareness within the industrial-automation commu-
nity does not seem fully developed, yet. Indeed, from an analysis on
11 popular online industrial automation forums1 totalling 294,680
users, we estimated that as low as 2.31% pages (10,868 out of 469,658)
mention security-related keywords (e.g., security, vulnerability, and
attack), and we discovered vulnerable code snippets2.

As trends show an increased IT-OT convergence and a stream-
lined industrial software development with ample use of third party
code [2, 9, 22], we advocate for a more systematic approach to secure
programs written in IRPLs, on par with common general-purpose
programming languages. As a first step, we propose a static source
code analyzer that can pinpoint relevant code paths using dataflow
analysis on the interprocedural control-flow graph, to detect vulner-
able or malicious uses of security-sensitive primitives. For example,
in Section 4 we show how our tool can tell whether and where a
task program receives data from the network and uses that data
to derive a file name, open such file and return its content over
the network. We evaluated our analyzer on publicly available pro-

1https://forum.adamcommunity.com/index.php, https://dof.robotiq.com,
https://automationforum.in, https://www.robot-forum.com/robotforum,
https://control.com, https://solisplc.com/forum, http://forums.mrplc.com,
https://www.reddit.com/r/robotics, http://plc.myforum.ro,
https://forum.universal-robots.com, https://forums.robotstudio.com
2https://forums.robotstudio.com/discussion/11662/how-to-continue-cycle-in-
automatic-mode/p1. This code snippet receives coordinates from a network socket
(without authentication and boundary checks), and uses them to control the robot.

1

https://doi.org/10.1145/3320269.3384735
https://doi.org/10.1145/3320269.3384735
https://forum.adamcommunity.com/index.php
https://dof.robotiq.com
https://automationforum.in
https://www.robot-forum.com/robotforum
https://control.com
https://solisplc.com/forum
http://forums.mrplc.com
https://www.reddit.com/r/robotics
http://plc.myforum.ro
https://forum.universal-robots.com
https://forums.robotstudio.com
https://forums.robotstudio.com/discussion/11662/how-to-continue-cycle-in-automatic-mode/p1
https://forums.robotstudio.com/discussion/11662/how-to-continue-cycle-in-automatic-mode/p1


ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan M. Pogliani et al.

MODULE example

VAR robtarget point0 := [

[500,500,500],[1,0,0,0],[0,0,0,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

VAR robtarget point1 := [

[700,500,500],[1,0,0,0],[0,0,0,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

VAR zonedata zone := z100;

PROC main()

FOR i FROM 1 TO 10 DO

MoveJ point0, v100, zone, tool0, \WObj:=wobj0;

WaitTime 4;

MoveL point1, v100, zone, tool0, \WObj:=wobj0;

WaitTime 5;

ENDFOR

ENDPROC

ENDMODULE

DEF example()

DECL POS pos1

DECL POS pos2

pos1 := {X 500, Y 500, Z 500, A 0, B 0, C 0}

pos2 := {X 700, Y 500, Z 500, A 0, B 0, C 0}

FOR I=1 TO 10

PTP pos1

WAIT SEC 4

PTP pos2

WAIT SEC 5

ENDFOR

END

Figure 1: Examples of programs written in two IRPLs: ABB’s RAPID (left) and KUKA’s KRL (right).

grams written in two of the most well-known IRPLs—by ABB and
KUKA [20], both of which operate world-wide since decades and
have hundreds of thousands of employees. Although source-code
vetting can help detecting vulnerabilities early during development,
in the longer term, we argue that vendors should implement mit-
igations such as resource isolation, higher-level communication
primitives (e.g., with built-in type systems and/or authentication).

In summary, we propose the following contributions:

• We analyze the programming languages of 8 leading indus-
trial robot vendors, detail the presence of complex and rich
features, and discuss their vulnerable and malicious usages,
which we deem collectively as “insecure” (Section 2, 3);

• We propose a static code analyzer for IRPLs to analyze task
programs and find security issues in the use of sensitive
primitives (Section 4);

• We use our tool to analyze a corpus of publicly available
programs and show they contain vulnerabilities (Section 5).

We conclude by discussing potential remediation steps that can be
adopted in the medium and long term (Section 6).

2 Programming Industrial Robots

IRPLs allow programmers to write repeatable, deterministic, and
complex tasks, and to interconnect robots with external systems [6].
Like any software artifact, task programs also can contain flaws.

Proprietary Languages. Most IRPLs are similar to BASIC or AL-
GOL, augmented with robot-specific instructions, constructs, and
data types. Task programs written in IRPLs are either interpreted
or compiled to a proprietary binary format before execution. IR-
PLs provide access to system resources—including, for example, the
robot’s movement—through specific instructions and functions. Fig-
ure 1 shows two examples. Unlike general-purpose programming
languages, IRPLs are proprietary and vendor specific. The vendors’
different design choices result in different trade-offs between fea-
tures and complexity. Indeed, despite there exist development and
off-line simulation environments that support multiple languages3,
there is no true, standard cross-vendor solution or “lingua franca.”

3For example, https://robodk.com.

Resource Abstraction. IRPLs are used to write complex applica-
tions that interact with external resources and systems (e.g., with
multiple robots, smart end effectors, or external vision systems).
Thus, many languages allow access to non-motion system resources:
file systems, network, system configuration and communication
with external devices (e.g., fieldbuses, serial communication). Exter-
nal systems are accessed via low-level APIs such as raw network
sockets to exchange data to and from the network. According to
our analysis, there is very little or no high-level API abstraction:
Developers can only use low-level system resources. While this
means more flexibility, it also implies more room for mistakes.

There are notable exceptions, which we hope will inspire future
improvements. For example, Mitsubishi’s MELFA BASIC provides
a high-level network-based protocol to remotely control a robot in
real time through dedicated instructions (e.g., Mxt, shorthand for
“move external”). KUKA’s KRL offers high-level network sockets
that exchange XML-serialized data through a language extension
(KUKA.Ethernet). Similarly, Universal Robot offers high-level XML
RPC functionalities [25]. These exceptions are limited to network
communication, although we argue that a similar abstraction ap-
proach should be applied to other security-sensitive functionalities,
as it will be clear in the remainder of this section.

2.1 Access to System Resources

Driven by an increasing market demand, IRPLs offer great flexibility
and capabilities. As a result, the programming features needed to in-
terconnect with heterogeneous external devices and networks may
in turn create the venue for well-known vulnerabilities, like input-
validation and logic errors, on par with general-purpose languages.
Moreover, IRPLs are expressive enough that can be used to write
malicious programs that, when uploaded and executed on an indus-
trial robot, have full and unmediated access to hardware resources.
This would permit the attacker to implement complex malicious
functionalities (e.g., the dropper-like behavior of Listing 4).

We surveyed the languages used by 8 popular industrial robot
vendors, examining the available language reference documents,
and manually looking at the implementation of real programs. In
Table 1 we summarize the sensitive primitives that we identified.
These primitives, when misused, may have an impact on the robot’s
security, the safety of its operators, or the connected systems.
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Table 1: Sensitive primitives supported by the surveyed IRPLs. Section 2.3 provides exemplifying attack scenarios that exploit

these primitives.

File system operations and di-
rectory listing.

Load and execute code at runtime, in-
cluding dynamically-defined code.

Receive from or send data
to external systems.

Language Vendor File System Directory Listing Load Module From File Call by Name Communication

RAPID ABB ✓ ✓ ✓ ✓ ✓

KRL KUKA ✓ ✓

MELFA BASIC Mitsubishi ✓ ✓

AS Kawasaki ✓

PDL2 COMAU ✓ Indirect ✓ ✓ ✓

PacScript DENSO ✓ ✓ ✓

URScript Universal-Robot ✓

KAREL FANUC ✓ ✓ ✓ ✓ ✓

We focus on three, broad categories of programming primitives:
file-system access, dynamic or external program loading, and
communication functionalities.

File-system Access. Opening, reading and writing files via IRPLs
is a necessary mean to access configuration parameters, writing log
information, storing the state of a program, or reading movement
coordinates from a file written by another program. The first column
(“file system”) in Table 1 indicates whether the language supports
programmatic access to files and directories (open, read, write),
while the “directory listing” column indicates whether there is a
programmatic way to list the available files and directories. The
complexity of the file system varies widely across vendor: While
some vendors (e.g., ABB, COMAU) provide a structured file system,
others (e.g., MELFA) provide a flat, simple implementation, or no
programmatic access to files whatsoever (e.g., Denso). In the case
of COMAU, we indicated the capability of performing directory
listing as “indirect”, as it is possible to use the SYS_CALL instruction
to execute system commands, including the command to list files
in a directory, and subsequently parse the command’s output.

Dynamic or External Program Loading. The ability to call pro-
cedures dynamically in IRPLs allow developers to write compact
and modular programs. Hence, some industrial robots include:

• The ability to resolve a function reference in a loaded module
at runtime, calling it through the function’s name. This is
achieved by passing a string with the function name to a
routine like CallByName, or by using special language con-
structs (e.g., the %"functionName"% syntax for late binding
in ABB RAPID). This functionality can be used to call a func-
tion where the function’s name is composed of a common
prefix concatenated with a parameter available at runtime.

• A wat to dynamically load a module from a file containing
the task program code and execute it. This functionality
allows to develop modular programs by loading modules
based on input received at runtime. Note that, similarly to
the directory listing functionality, dynamic module loading
in COMAU is achieved executing a system command using
SYS_CALL, rather than by a dedicated function or instruction.

These functionalities allow calling programs and procedures, being
thus a way to dynamically change a program’s execution flow.

Communication Functionalities. Industrial robots require com-
munication functionalities to interface with external networks and
systems. Some examples include receiving real-time position coor-
dinates by an external program, interacting with a vision system
that provides geometrical information on the position of the work
piece, and sending feedback to external systems for logging.

All the surveyed languages provide some form of networking
capabilities, either out of the box or as language extension (e.g., for
RAPID, sockets are included in a optional package; for KRL, they
are available in the KUKA.Ethernet KRL add-on; for KAREL, they
are a language extension and not part of the core language).

Although sockets in IRPLs often work as in general-purpose
programming languages, some IRPLs have noticeable differences.
In KUKA’s KRL, sockets define a “typed” interface such that the
program can only exchange XML or typed binary data; in MELFA’s
BASIC and Kawasaki AS, the definition of the socket parameters
(e.g., IP address, port) is performed out of band, by manually config-
uring the robot’s parameters, and cannot be changed by a program.

All the surveyed vendors provide at least one way to exchange
data over serial ports and fieldbuses, as it is a basic means of factory
floor integration. Although our technical analysis does not focus
on these non-IP networking systems, these are still direct channels
connected to external devices, which are not necessarily trusted:
Therefore, this attack vector should be the subject of future scrutiny.

2.2 Research Challenges and Goals

The primitives of Table 1 are not, by themselves, a security issue,
and we do not aim to call out vendors for providing them: There
are ways to use them securely, and their availability is a signal of
the complexity and maturity reached by industrial robotics.

However, the security impact of these primitives has not been
studied yet. Our previous research [18] found a path traversal vul-
nerability in a real-world program: A web server written in ABB’s
RAPID. This vulnerability allows attackers to access (sensitive) files
outside of the root directory served by the application. This case mo-
tivated us to investigate potential insecure uses of such primitives,
and to develop a IRPL-specific program analysis tool to support
vulnerability discovery, as well as detection of malicious function-
alities. Our goal is to bring this to the attention of the security and
robotics communities, and raise awareness to the vendors.

3
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2.3 Attack Scenarios

With the sole purpose of providing context for the remainder of
the paper, we hereby provide three attack scenarios, in which an
adversary may abuse the security-sensitive primitives of Table 1. We
remark that these scenarios are fictitious, although in our opinion
useful to showcase the risks of a misuse of IRPL primitives.

Industrial software—including task programs for robots—do not
always provide authentication or encryption, because they assume
a closed and trusted environment. However, with the increased inte-
gration of the factory floor with external services, such assumption
is becoming less realistic, and arguably not future proof. Moreover,
recent advanced attacks have already shown capability to propa-
gate down to the factory floor, sometimes even up to the safety
system (e.g., see Trisis or Xenotime in [24]).

Scenario 1: UnauthorizedDataAccess. Let’s consider a task pro-
gram that writes in a log file the coordinates of the paths followed
by the robotic arm during its operation. Such log file is used for
auditing, calibration, and quality assurance (e.g., root-cause analy-
sis of defective products), and may contain sensitive information
like intellectual property (i.e., how a product is built). Also, the task
program opens a network socket because an external agent needs
to retrieve the log files for post-processing and archival purposes.

Let’s now assume that an attacker has compromised a machine
within the same network of the robot. As a first step, the attacker
may try to impersonate the agent (e.g. through ARP spoofing),
connect to the socket, and exfiltrate the log.

Then, the attacker may want to move laterally, by planting mal-
ware in the robot’s machine and remaining persistent. However,
the login console (e.g., telnet) is password protected and does not
contain known vulnerabilities. However, the attacker understands
that the task program that keeps the socket open is affected by a
path-traversal vulnerability: The application trusts that any request
coming from the agent will contain a legitimate file path relative to
the directory where the log files are stored. The attacker may be
able to exploit this vulnerability to access the file containing authen-
tication secrets, and use that to finally access the target machine
via login console and compromise the robot’s machine.

The first program listed in Table 5 contains an instance of such
vulnerability, which our analyzer was able to automatically detect.

Scenario 2: Task Flow Alteration. Let’s consider a task program
that receives a stream of coordinates via a socket. This is often
the case for real-time external control task programs, which allow
robots to be controlled by other endpoints.

Like in Scenario 1, let’s assume an attacker within the same net-
work of the robot’s machine, yet with no access to it. The attacker
wants to disrupt the robot’s operation, to alter its execution flow,
causing damage and impacting on the safety of the manufacturing
station. There is proper network-level protection (IP and MAC fil-
tering), which ensures that the robot receives coordinates only from
the designated controller. However, the task program is affected by
an input-validation vulnerability: Any received coordinate value is
automatically trusted. Therefore, an attacker able to impersonate
the controller can send arbitrary coordinates, and the robot will
just act accordingly and potentially cause damage.

Table 2: Sources of untrustworthy data (i.e., sensitive

sources) – Section 3.1

Type Intended Use

Case

Attacker

Model

File Static data from con-
figuration files

Contractor

Inbound Commu-

nication (network,
serial, fieldbus)

Dynamic real-time
data

Untrusted networks
or endpoints

Teach Pendant

(i.e., UI forms)
Operator-supplied
data

Insider

All the programs marked as “External move”, “Remote control,”
and “Integration server” in Table 54 contain instances of such vul-
nerability, which would allow an attacker to arbitrarily control the
robot’s movements.

Scenario 3: Persistent Information Stealing. Let’s assume that
a robot runs a task program written by a system integrator. The
system integrator is either compromised, or the task program is
fetched from a misconfigured or vulnerable storage (e.g., FTP). At
a first glance, we may say that in such scenario an attacker could
straightforwardly replace the task program to change the automa-
tion of the robot. However such a drastic approach may be noticed.

If the task program is written in any of the IRPLs (listed in Table 1)
that supports dynamic code loading and networking primitives, the
adversary has the opportunity to run a stealthier attack. They may
slightly alter the source code of the task program to include a
network communication routine that fetches code from outside (or
from a hidden file), and then use dynamic loading to run it as part
of the normal automation loop.

Although there are different strategies to implement such attack,
in Table 4 we show how our analyzer can be configured to detect
the code patterns of one example implementation.

3 Unsafe Programming Patterns

We now detail more technically how some IRPL primitives become
sources of untrusted data, while some others can result into vulner-
able uses of such untrusted data. We also show how some primitives
can be abused for malicious purposes, e.g., to develop malware writ-
ten in IRPLs. In our threat model, the attacker can plant a malicious
task program into the robot. As exemplified in Section 2.3, this can
happen in various ways and locations of the software supply chain.
A detailed investigation on the initial entry points is beyond the
scope of this work: We focus exclusively on the IRPLs’ capabilities.

3.1 Sources of Untrustworthy Data

We consider a source of untrustworthy data any avenue where a
task program written in a IRPL receives and processes data coming
from the external world. Particularly, as summarized in Table 2, task
programs receive inputs from files, communication mechanisms
(e.g., network, serial communication, fieldbuses), and the teach
4Excluding those with 0 (zero) patterns.
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Table 3: Vulnerable uses of untrustworthy data (i.e., in sen-

sitive sinks) – Section 3.2

Type Intended Use

Case

Attacker Goal

(Example)

Movement Programmatically
manoeuvre the
robot

Unintended robot
movement

File Handling Read arbitrary files Data exfiltration
File Modification Write configuration Implant a backdoor
Call by Name Write parametric

and generic code
Divert the control
flow

pendant’s user interface. Such (untrusted) input, if not correctly
handled by the program, can be abused by an attacker. For example,
data files could be tampered with by malicious third-parties like
contractors; inbound communication data could originate from
compromised networks and endpoints; and user interfaces could
be manipulated through the physical attack surface by an insider.

3.2 Vulnerable Uses of Untrustworthy Data

Untrustworthy data can be used in various patterns that result into
software vulnerabilities. Particularly, we distinguish four broad
categories of “sensitive sinks.” These functions, when called with
parameters derived from (tainted with) untrustworthy data, lead to
taint-style vulnerabilities, as summarized in Table 3.

3.2.1 Movement Commands The tainted data (received from a sen-
sitive source) is used to control the robot’s trajectory. This pattern is
widely used as a way to control or influence the robot’s movement
from an external program, even in near real-time: Indeed, it is sup-
ported out of the box by some vendors. For example, Mitsubishi’s
MELFA robots provide the Mxt (move external) instruction, which
automatically listens for UDP packets containing information about
the robot position, and which is intended as a way to perform real-
time control of the robot. Similarly, ABB provides the Robotware
Externally Guided Motion option, which allows an external device
to perform direct motion control.

Example. A popular implementation of this pattern are adapters
the for third party middleware such as ROS5, in particular the
project ROS-Industrial6, which extends ROS to support industrial
robots, and became the reference open-source platform for indus-
trial robotics [3]. To use ROS with an industrial robot, one has to
rely to its interface; in many cases, the robot-side interface is a task
program which listens on a network port, accepting commands that
will be directly translated to the robot’s movement and returning
information about the robot’s status over the network.

In all of the task programs that we examined, we found no authen-
tication nor validation on the movement coordinates: An attacker
who can send data on the network is able to issue any movement
command, possibly moving the robot outside its normal operating
range. Listing 1 shows an example written in KUKA’s KRL.
5Robot Operating System, a popular robotic research platform: https://ros.org
6https://rosindustrial.org

3.2.2 File and Configuration Handling Tainted data received from
a sensitive source such as a network socket is used as part of the file-
name parameter of a “file open” or “configuration open” instruction,
without validation. In this case, a network attacker can control the
name of the (configuration) file to be opened and read, leading to
the disclosure of sensitive information (e.g., secret files, intellectual
property) or to the overwrite of sensitive configuration files. If the
robot controller implements a structured file system (e.g., COMAU,
ABB, KUKA) rather than a flat one, this issue may lead to the classic
directory traversal vulnerability. Note that the extent of file-system
access granted to the attacker may be limited by OS-level isolation
functionalities, similarly to the “chroot” mechanism in Unix.

Example. In previous research [18], we found a real case of vul-
nerable application for industrial robots, which was made available
through ABB’s RobotApps platform7. The application runs as a
web server providing static and dynamic pages. This application
is affected by a directory traversal vulnerability allowing access to
arbitrary files, including the system’s configuration: An attacker is
able to reach secret targeted files, including sensitive configuraton,
via a well-formed HTTP request (e.g., ../../secret.txt). Listing
Listing 2 presents an example of vulnerable webserver in RAPID
with a directory traversal vulnerability.

3.2.3 File and Configuration Modification Functions Orthogonal
to file handling functions, untrustworthy data may be used as the

7As a result of a disclosure to ABB, this program is no longer publicly available.

DEF external_movement()

DECL axis pos_cmd

eki_init("ExiHwInterface")

eki_open("EkiHwInterface")

LOOP

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A1", pos_cmd.a1)

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A2", pos_cmd.a2)

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A3", pos_cmd.a3)

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A4", pos_cmd.a4)

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A5", pos_cmd.a5)

eki_getreal("EkiHwInterface", "RobotCommand/Pos/#A6", pos_cmd.a6)

PTP joint_pos_cmd

ENDLOOP

END

Listing 1: Vulnerable socket-controlled movement (KRL).

MODULE VulnWebServer

PROC main()

SocketCreate server;

SocketBind server, '0.0.0.0', 1234;

SocketListen server;

SocketAccept server, sock;

WHILE true DO

SocketReceive sock, \RawData:=data;

fileName := ParseCommand(data);

Open fileName, res;

ReadAndSendFile(\file:=res, \socket:=sock);

ENDWHILE

ENDPROC

ENDMODULE

Listing 2: Path traversal vulnerability. (RAPID)

5
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MODULE VulnCodeLoader

PROC main()

SocketCreate server_socket;

SocketBind server_socket,"0.0.0.0", 1234;

SocketListen server_socket;

WHILE loop DO

SocketAccept server_socket, client_socket;

SocketReceive client_socket \Str:=data;

function_name:=ParseFunction(data);

%function_name%; ! call procedure by name

WaitRob\ZeroSpeed;

SocketSend client_socket\Str:="R move completed";

SocketClose client_socket;

ENDWHILE

ENDPROC

ENDMODULE

Listing 3: Vulnerable code loader. (RAPID)

content to be written in configuration files, or passed as parame-
ter to configuration setting functions. If the data is not sanitized
(e.g., checked against a white list, or against an acceptable range),
an attacker may overwrite configuration values in an unexpected
and potentially unsafe way.

3.2.4 Call Procedure By Name Some IRPLs have the capability of
resolving at runtime and programmatically the names of the rou-
tines to be called (“late binding”). For example,a developer may
use a construct like CallByName(fun_name) in order to call a func-
tion, where fun_name is a string variable containing the function
to be called. If this variable originates from an untrusted source and
there is no input validation, the program is vulnerable: An attacker
may subvert the control flow of the program, with varying effects
according to the semantics of the loaded module(s).

Example. We found an instance of this programming pattern in
an ABB RAPID program we found online (Listing 3 presents a
simplified version). This program implements a server with multi-
ple functionalities; to select the functionality to be called, instead
of using a chain of if constructs, the name of the functionality
is received from the socket and then passed as a parameter to a
“late binding” construct. An attacker can exploit this instance of
vulnerability to call any other function in the same task program.

3.3 Malicious Patterns

Enumerating all potential abuses of primitives for malicious pat-
terns is an endless game and only limited by the creativity of the
malware author, and it is intrinsically harder to compile an exhaus-
tive list of malicious behaviors. In Table 4, we limit our focus to
two examples of classic behaviors commonly found in modern mal-
ware, first to confirm that they can be implemented in IRPLs, and
secondly to show how they appear in terms of code patterns.

The information stealer pattern is particularly relevant in in-
dustrial settings because both the configuration parameters and
the programs residing on the robot controller are considered high
valuable intellectual property, and therefore attractive assets for
attackerss. A malicious IRPL making use of the information stealer
patter will, for example, exfilitrate confidential information from

MODULE Dropper

PROC main_loop()

! ... variable declaration

! ... socket creation and initialization

WHILE TRUE DO

SocketReceive clientsock, \Str:=data;

name := ParseName(data)

Open diskhome + "/" + name + ".mod", f;

WHILE data DO

SocketReceive clientsock, \Str:=rec;

Write f, rec;

ENDWHILE

Load \Dynamic, diskhome \File:=name + ".mod";

%name + ":main"%; ! call function by name

ENDWHILE

ENDPROC

ENDMODULE

Listing 4: Example of dropper malware. (RAPID)

local files through an outbound connection. Note that our attack
model assumes that the attacker has not straight read-access to
the file system, but rather infects an existing task program with an
information-stealing malicious routine like in the case of a mali-
cious, or compromised system integrator.

In the dropper case, the attacker is able to download and execute
any second-stage malware like we capture in Listing 4. Contrary
to previous research on PLC malware [10, 16, 17], we purposely
decided not to focus on the functionalities of the downloaded mal-
ware (e.g., network target enumeration, file harvesting), but rather
representing this as a generic pattern.

4 A Source Code Static Analyzer for IRPLs

To quantify and analyze the extent of unsafe programming patterns
in task programs, we conceived and implemented a prototype static
source code analyzer for IRPLs. On one hand, we used our tool
to perform an analysis of publicly available IRPL code and show
which, and to what extent, unsafe and vulnerable patterns are found.
As described thoroughly in section 5, none of the programs that
we analyzed implemented proper input sanitization. On the other
hand, we propose the use of static analysis to verify task programs
before upload on robots, in order to anticipate the security (and
safety) impact of the use of such programs in production.

Our proposed tool processes task programs and uses taint anal-
ysis to detect data flowing from one or more sensitive sources
(e.g., data from the network) to one or more sensitive sinks (e.g. move-
ment, file open, late binding). The analyzer is modular with respect
to the supported IRPLs, and the searched code patterns are config-
urable by means of queries on the data flow. Our proof-of-concept
implementation supports ABB’s RAPID and KUKA’s KRL.

Table 4: Examples of malicious patterns.

Case Feature Source Sink

Information stealer Exfiltration File → Outbound Network
Exfiltration Config → Outbound Network
Harvesting Dir. list → File

Dropper Download Communication → File (code)
Execute File (code) → Call by name
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Figure 2: High-level workflow of the proposed source code analyzer.

Taint analysis techniques have been successfully applied to find-
ing vulnerabilities in general-purpose programming languages,
such as C and web development languages, but, to the best of our
knowledge, there are no security-oriented applications to IRPLs. We
show that taint analysis is efficient in detecting vulnerable uses of
untrustworthy data and malicious patterns as outlined in Section 3,
as they all can be expressed by means of source–sink paths.

4.1 System Overview and Workflow

Figure 2 shows a high-level workflow of our analyzer, which con-
sists of the following steps: parsing, control-flow graph (CFG) gen-
eration, interprocedural control-flow graph (ICFG) generation, and
data-flow analysis.

We start by parsing a task program’s source code, and walking
through the parse tree to generate the CFG of each function. We
then produce an ICFG with the goal of representing the control
flow between functions. We do this by linking the functions’ CFG
at function call statements. Finally, we perform a data-flow analysis
on the constructed ICFG to detect potentially sensitive data flows
from sources to sinks.

The final output of our analyzer consists of the list of sensitive
data flows (source–sink pairs), along with some context useful to the
analyst, including, for example, code lines information and relevant
function names. An example is given in Listing 5, in which our tool
detected a vulnerable pattern from the code of eki_hw_iface_get
to the code of kuka_eki_hw_interface. In particular, it found a
path from eki_getreal (i.e., parse a numerical value from incom-
ing network data) to joint_pos_tgt (i.e., move joint to position).

4.2 Implementation Details

We implemented our prototype analyzer in Python 3, using the
networkx8 library for graph-manipulation tasks.

Steps 1–2: Parsing and CFG Generation. We implement the
parser by using Antlr9 to generate both the lexical analyzer and the
LL(*) parser from a specification of the IRPL grammar. We devel-
oped the grammars from the information available in the reference
manuals of the robot languages, and by looking at existing pro-
grams. In general, writing the grammar for a new language is not

8https://networkx.github.io/
9https://www.antlr.org/

necessarily a hard task: As an example, the official language refer-
ence for ABB’s RAPID [1] includes portions of the EBNF grammar,
which we ported to Antlr.

Once an IRPL program is parsed, we visit its parse tree and build
the CFG in memory. Each node of the CFG (also known as basic
block, in program-analysis terminology) contains a list of instruc-
tions. These instructions are expressed in a language-independent,
simplified, intermediate representation10. We adopted a modular
approach to make our tool easily extensible to different robot lan-
guages. In particular, the only analyzer’s components that are IRPL-
specific are the grammar specification and the CFG generator, im-
plemented through Antlr’s visitor pattern.

Once the CFG is built, we run a set of (language-agnostic) simpli-
fication passes: For example, we add CFG edges at goto statements,
we enforce a single exit point (return) for the CFG of each function,
and we eliminate dead code blocks.

Step 3: ICFG Generation. The second step of our analysis con-
sists in generating the ICFG. To this extent, we visit the CFG of
each function, and substitute all those nodes with calls to func-
tions defined in the same module (i.e., functions where the CFG is
available) with two CFG edges:

10Our intermediate representation does not preserve the complete semantics of the
instructions, but only their data flow. This is all we need for taint analysis.

{

"sources": [

{

"src_var": "joint_pos_cmd",

"source": "eki_getreal",

"source_fn": "eki_hw_iface_get",

"source_line_no": 180,

"source_filename": "kuka_eki_hw_interface.src"

}

],

"sink_var": "joint_pos_tgt",

"sink": "ptp",

"sink_fn": "kuka_eki_hw_interface",

"sink_line_no": 73,

"sink_filename": "kuka_eki_hw_interface.src"

}

Listing 5: Output of the analysis of a task program that

implements externally controlled movements (Listing 1

shows an excerpt of that).
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• an edge from the instruction immediately preceding the call
to the entry basic block of the callee’s CFG. To properly
model the data flow from the function calls’ actual parame-
ters to the function’s formal parameters, we add additional
assignment nodes along this edge.

• an edge from the exit basic block of the callee’s CFG to the
instruction following the call. We also add further nodes to
correctly propagate the returned value to the caller, as well
as to propagate the value of any output parameter declared
as such in the function prototype.

With this procedure, we build an “exploded super graph” of all the
functions in the program under analysis.

Step 4: Dataflow Analysis. We follow a forward-only dataflow
analysis for taint tracking, which propagates taint information
from the functions defined as sources (e.g., inbound network data)
towards all the basic blocks (nodes) in the program. Afterwards, we
check whether any input parameter of the functions defined as sink
(e.g., coordinate passed to robot-movement functions) was tainted,
and by which source. To do so, the analysis algorithm keeps track
of the set of “taints” (i.e., the set of sources that influenced the value
of the variable) for wach variable in every ICFG node.

To compute the result of our analysis, we use a work-list based
iterative algorithm. In its essence, the dataflow analysis is defined
by a carrier lattice, which represents the information computed for
each node of the ICFG, and a transfer function, which defines how
the information is propagated according to the semantics of each
instruction. Elements in the carrier lattice are the set of sources
that taint each variable. The transfer function forward-propagates
the taint information from the variables used by the instruction to
the variables defined by the instruction. For example, the transfer
function for a binary operation adds to the taint information of the
result the union of the taint information of its two operands.

Some function calls refer to functions whose implementation
is not present in the analyzed programs: They may be calls to
library functions or to functions defined in a file not available to
the analyzer. As the analyzer doesn’t have the function’s CFG,
we approximate the behavior of such functions assuming that the
function uses all the parameters to compute the return value, if
any. Hence, the default transfer function for function calls adds—to
the taint information of the return value—the union of the taint
information of all the parameters. However, many library functions
do not work this way: They may have output parameters, as well as
accepting parameters that do not influence the result in a security-
sensitive way. Ignoring this fact would lead to an imprecise analysis.
Hence, we model calls to library functions in a language-specific
fashion: For each supported language, and for each library function,
we specify which parameters are considered inputs and which
parameters are considered outputs for taint propagation purposes.

Finally, our transfer function supports the concept of sanitization,
that is an operation that removes the taint from a variable. This
reflects the behavior of functions that are used for input sanitization,
or that change the handled resource. For example, to track whether
some data is written (exfiltration) to a user-contorlled file, we can
consider the Close instruction as a sanitizer, as further uses of the
same (closed) file descriptor would necessarily refer to a different
file. Our tool supports a configuration-defined set of sanitizers.

4.3 Source and Sink Configuration

The searchable code patterns are configurable by means of source–
sink pairs, so that our tool is generic with respect to them. For our
evaluation, we used source–sink pairs that express the vulnerable
patterns described in Section 3.

KUKA’s KRLConfiguration. As sources, we consider those func-
tions receiving data from network via the KUKA.Ethernet KRL
extension: functions starting with eki_get such as eki_getreal,
and functions belonging to the KUKA.Ethernet KRL XML package,
(e.g., EKX_GetIntegerElement). As sinks, we consider instruction
movements such as ptp, lin, and circ.

ABB’s RAPID Configuration. To detect vulnerable uses of sen-
sitive primitives, our sources are the parameters of the function
SocketReceive (i.e., Str and RawData). Our sinks include move-
ment, file- and configuration-handling functions and late bind-
ing: Move, Open, OpenDir, SaveCfgData, WriteCfgData, Load, and
CallByVar.

Malicious Behavior Detection. When detecting potentially ma-
licious behavior, it is possible to configure our tool to use sources
and sinks that reflect the patterns proposed in Table 4. For exam-
ple, to detect exfiltration in ABB’s RAPID, we monitor taints from
ReadRawBytes (and other device read functions) to SocketSend.
Since there is no universal definition of “malicious behavior,” this
list is not exhaustive and other patterns can be used.

5 Evaluation

Our analysis tool can detect both security-sensitive code patterns
that could lead to vulnerabilities in task programs as well as ma-
licious patterns that could lead to malware. First, using our tool
we were able to confirm the path-traversal vulnerability that the
authors of [18] found manually. Such vulnerability resulted in ABB
removing the vulnerable application from the online repository. We
found the very same vulnerability automatically, with no guidance.
We also discovered several instances of task programs that handled
unsanitized data received from sensitive sources, and used it to
control the movements of the robot. Notable examples of this case
are the various ROS-Industrial adapters, which consist of IRPL code
that interface the communication protocol of the major robot ven-
dors with that of ROS-Industrial. An attacker on the network could
exploit such vulnerability to influence the movements of a robot’s
arm. Secondly, we ran our analyzer against a proof-of-concept of
malware that we implemented, as described in Section 3.3. Our tool
detected the malicious code patterns, showing that it is helpful to
implement code-vetting systems.

5.1 Dataset

Our dataset11 consists of publicly-available IRPL programs that
we collected via open resources. Specifically, we used the search
functionality of popular source-code repositories (like GitHub and
BitBucket) and Google’s advanced-search operators, searching for
files with RAPID and KRL’s extensions, plus some language key-
words (e.g. MoveJ or MoveL for RAPID) to filter false positives. Out
of the found programs, we filter only ones that use at least one of
11The dataset is available from: https://robosec.org/data/asiaccs2020
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Table 5: Summary of findings including the number of detected insecure patterns per analyzed program. Only the programs

having at least a sensitive source are considered in the analysis. Note that the label “false positive” refers to the presence of at
least one case of false positive among the detected patterns. Note that ptp, lin and circ are movement instructions in KRL.

#Files #LOC Purpose #Patterns Language Details Errors

Vulnerability Class: network −→ code execution
1 130 Demonstrator 2 RAPID 2 %late binding instruction%
1 123 Demonstrator 2 RAPID 2 %late binding instruction%

Vulnerability Class: network −→ filesystem
4 974 Web server 5 RAPID 2 Open, 2 FileSize, 1 OpenDir

Vulnerability Class: network −→ movement
10 1,878 External move 51 RAPID 18 MoveC, 12 MoveAbsJ, 21 MoveL 9 False Positives
9 672 Experimental code 9 KRL 5 lin, 4 ptp
1 634 Integration server 52 RAPID 25 MoveL, 16 MoveAbsJ, 5 MoveJ, 6 MoveC
1 628 Integration server 52 RAPID 25 MoveL, 16 MoveAbsJ, 5 MoveJ, 6 MoveC
1 537 Remote control 6 RAPID 4 MoveL, 2 MoveAbsJ
2 460 External move 26 RAPID 10 MoveL, 10 MoveAbsJ, 6 MoveC
3 453 External move 26 RAPID 10 MoveL, 10 MoveAbsJ, 6 MoveC
2 397 Integration server 4 KRL 2 lin, 1 ptp, 1 lin_rel
1 338 Integration server 9 KRL 2 circ, 5 ptp, 2 lin
1 106 Integration server 5 KRL 2 ptp, 1 lin, 1 ptp_rel, 1 lin_rel
1 111 Educational code 5 KRL 2 ptp, 1 lin, 1 ptp_rel, 1 lin_rel
1 76 Integration server 1 KRL 1 ptp
1 60 Code snippet 1 RAPID 1 MoveJ

No vulnerability found

32 7,165 Palletizer 0 KRL -
5 1,038 Integration server 0 RAPID -
6 337 Integration server 0 RAPID - 3 False Negatives
2 199 Integration server 0 RAPID -
5 165 Example code 0 KRL -
1 70 Code snippet 0 RAPID -

the sensitive sources we consider in our analysis—other programs
cannot contain any vulnerable patterns according to our definition.
Overall, we collected 91 task-program files using at least a source,
divided into 14 RAPID projects (39 files) and 8 KRL projects (52
files), totaling 16, 551 lines of source code excluding comments.

Representativeness. We are aware that it is very hard to find
production code among public resources, because it contains in-
tellectual property, developers are likely bound to non-disclosure
agreements, and so are not allowed to share all of their artifacts
with the community. However, being our work the first step in
this research direction, this dataset is the only publicly-available
resource. In terms of reproducibility, we argue that it is the only
available research dataset to assess the correctness and the perfor-
mance of tools such as ours. Alarmingly, in this humble dataset
we found zero cases of properly implemented input validation: In
other words, if a sensitive primitive was used, it would always be
used insecurely. We believe that this result is useful to make our
point and raise security awareness in the automation and robotics
communities, which we believe would benefit from our findings.

VulnerableCode Samples. We highlight that our dataset includes
adapter code for ROS-Industrial—the reference open-source middle-
ware for industrial robotics [3]. Although we cannot conclude about

the actual adoption of such adapters, anyone searching online for
sample implementations would unavoidable find these resources.
Interestingly, recent research [26] showed that publicly available,
vulnerable code snippets end up in real-world, popular code bases—
even with modifications, yet still vulnerable. In other words, it is
undeniable that developers use public resources to learn and, un-
fortunately, when lacking the necessary security awareness, they
tend to propagate vulnerable code.

5.2 Detection Capabilities

According to the results of the automated analysis that we per-
formed with our tool, 45.4% and 12.2% of programs (RAPID and
KRL respectively) present sensitive patterns. If we count in only
those programs with sensitive sources, 71.4% of the RAPID pro-
grams and 75.0% of the KRL programs have sensitive patterns that
may lead to vulnerabilities.

Summary of Findings. A summary of our findings is in Table 5.
The table shows the number of patterns identified for each pro-
gram12. By pattern we mean an instance of a variable that “flows”
into a sink and is tainted by data flowing from a sensitive source.
Multiple tainted variables passed as parameters to the same sink are

12We consider only those programs with sensitive sources
9
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counted as different patterns. For example, if a movement command
is issued with both the target position and the velocity parameters
tainted by a sensitive source, we count two patterns.

ABB’s RAPIDPrograms. Out of the 14 RAPID programs reported
in Table 5, 8 had a flow from the string parameter (Str) of the
SocketReceive function towards the parameters of one of the
robot movement functions e.g. Move; 1 program had a flow from
SocketReceive to the late binding construct; 1 program (the web
server mentioned in Section 3.2) had a flow from SocketReceive
to the filename of multiple file handling functions, among which
Open), leading to a path-traversal vulnerability.

KUKA’s KRL Programs. Out of the 8 KRL programs with sensi-
tive sources, 6 had at least one sensitive pattern that lead to arbitrary
movement control (5 programs from the KUKA.Ethernet KRL ex-
tension and 1 from the KUKA.Ethernet KRL XML package). We did
not find instances of KRL program with different sinks, such as file
handling; late binding is not supported by KRL.

True Negatives. We also manually analyzed the 41 remaining KRL
programs that did not have sensitive sources. Interestingly, 15 and
13 of them use either the RSI and the FRI interface, respectively.
RSI and FRI allow external sources (e.g., sensors) to influence the
movements of the robot. Unlike the KRL-based interfaces, the KRL
program does not explicitly read data from the network and move
the robot according to it; instead, the robot’s controller automat-
ically receives data—via UDP—and moves the robot accordingly.
Hence, there is no explicit (i.e., visible) information flow in the KRL
program: the KRL program just needs to set up the RSI and/or FRI
interface and issue a start command, much like Mitsubishi’s move
external (Mxt) command. Using these interfaces allows a precise
and fine-grained robot control with real-time requirements. Instead,
the RAPID programs without sensitive sources did not implement
any other technique to acquire external input.

5.3 Discussion and Limitations

According to our analysis, unsafe patterns are unfortunately a recur-
ring case in robotic applications, especially for socket-controlled
robot movement—not to mention the KRL programs using real-
time external control interfaces. Our results justify the needs of
more secure development platforms and languages, as well as major
awareness on the security implications of the sensitive patterns we
reported. We hope that our work will contribute in this direction.

The Case of Network Adapters. The majority of the detected
patterns are for network-controlled robot movements. Network
adapters are the most widely found category of publicly-available
task programs as they represent an important component for plat-
form integration. All the network adapters we found were vulnera-
ble: The developers put no constraints on the allowed trajectories to
be commanded, and they implemented no authentication. To exploit
this, a network attacker needs only to send unexpected coordinates,
resulting in the robot arbitrarily following the instructions.

5.3.1 False Positives and False Negatives Our tool reported two
incorrect results, both related to ABB’s RAPID programs and due to
limitations of the current implementation. We manually analyzed
both cases and discuss them in the remainder of this section
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Figure 3: Performance of our tool (executed on a laptop

with an Intel i5-6287U processor and 16GB RAM). Bins are

equally sized, obtained with quantile-based quantization.

False Positives due to Context Insensitivity. In one program,
our tool wrongly reported a flow from a network socket to a move-
ment instruction. This false positive is due to the lack of context
sensitivity in the data flow analysis that we implemented. More pre-
cisely, when propagating the taint across ICFG’s edges of different
functions (i.e., across an edge representing a call or a return), the
analyzer fails in “linking” the call edge with the correct return edge;
hence, it computes an over-approximation by propagating the data
flow towards all the return edges of a function. This problem arises
particularly in the case of small functions heavily used throughout
the program (e.g., utility functions such as logging functions).

Future work could overcome this limitation by context-sensitive
dataflow analysis, such as by framing the problem as an inter-
procedural, finite, distributive subset problem and solving it through
state-of-the-art graph reachability algorithms suggested by the code
optimization community [21].

False Negatives due to Indirect Flows. The second error con-
sists of a false negative in the ROS adapter for ABB’s RAPID. This
adapter is organized as two concurrently running tasks (similar to
threads in conventional programming languages) and synchronized
using shared memory and interrupts. A task manages the network
communication, stores the received trajectory into a shared vari-
able, and signals the event by asserting a boolean flag that triggers
an interrupt; the second task handles the interrupt and manages the
robot’s movement. When the interrupt is triggered, the program
reads the new trajectory from the shared variable. Here, the data
flow between the two threads is not reflected in the two distinct
control flow graphs, but by the fact that the two threads run concur-
rently and use the same shared variables; hence, a classic dataflow
analysis cannot handle this case, as the taint is not propagated
through the control flow. We leave this as future work.

5.4 Performance

Figure 3 shows the performance of our analysis tool. Despite our
analyzer is implemented in an interpreted language (Python) and is
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not necessarily optimized for performance, it is able to perform the
analysis of thousands of lines of code in few seconds, proving to be
an clear improvement with respect to performing a manual analysis.
This also shows that this approach can be use to automatically scan
for vulnerable or malicious programs before they are uploaded to
the robot, or to software repositories.

6 Remediation and Future Research

The security issues that we identified and discussed can be miti-
gated. In the long term, for example, potential actions include the
redesign of IRPLs, security-aware runtime environments (e.g., to
support privilege separation or permission systems), and hardened
operating systems for robots. However, these changes are foresee-
able in the long term only. In the short term, we recommend a
program-level mitigation in which tools like that one we proposed
can aid developers in improving their software, and vendors and
system integrators to verify the programs that they deploy.

InputValidation. As for general-purpose programming languages,
an effective way to mitigate taint-style vulnerabilities is proper in-
put validation. For instance, when parsing untrusted data to obtain
motion commands or coordinates, programmers should verify that
the requested values fall within application-specific boundaries, so
to avoid unsafe conditions. When untrusted data is used as filename
to open files, programmers should disallow path separator charac-
ters or implement whitelisting mechanisms. When using user input
to compose the name of a late-bound function to call, programmers
should whitelist the allowed function names (partially hindering
the programming convenience of using late binding). We believe
that, like in general-purpose programming languages, developers
of IRPL programs should adopt these well-known best-practices;
most of the surveyed IRPLs include basic functionalities (e.g., string
manipulation) needed to build input-validation procedures.

Secure Communication. Network communication between ro-
bot programs typically occur between trusted parties. Because of
this, IRPLs do not to support authenticated or encrypted commu-
nication. To the best of our knowledge, we are not aware of IRPL
libraries that provide strong network encryption schemes (like TLS).
Therefore, it’s hard for developers to implement secure communi-
cation protocols, and custom solutions are often failing strategies.
We believe that, in the long term, robot vendors should offer SDKs
backed by OS-level support for authentication and encryption.

Secure External-move Commands. Several of the analyzed pro-
grams leverage external movement functionalities to remotely con-
trol industrial robots. Given the popularity of this use case, vendors
should provide the programmers with high-level external move-
ment functionalities that are authenticated and secure.

Privilege Separation and Permission Systems. Another impor-
tant system-level recommendation is privilege separation, and the
implementation of permission systems in general: The patterns
listed in Table 1 and 3 may lead to security issues primarily because
they require access to low-level, privileged resources. Ideally, like
in mobile development, IRPL programs that access privileged re-
sources must declare so in a “manifest”. This would allow to design
privilege separation or fine-grained permission systems, such that

to prompt for resource access at runtime. This is a challenging path,
because each vendor has complex sets of primitives, with various
degrees of “impact” on the underlying resources.

Code Signing. Unwanted or malicious code patterns can be miti-
gated through tools like that one we propose. This should be com-
plemented with code-signing mechanisms, like in mobile software-
distribution ecosystems, which guarantee integrity and authenticity
of the code running on each device, preventing, for example, back-
doored code to run—under the assumption that the attacker who
places the backdoor hasn’t compromised the private key.

7 Related Work

This work relates to (a) the security implications of IRPLs and (b)
IRPL program analysis to infer security properties. Although static
analysis techniques are common to detect vulnerabilities in general-
purpose languages, to the best of our knowledge, we are the first
to extend them to find vulnerabilities and malicious code in IRPLs.

Security of Industrial Domain-specific Languages. The use of
domain-specific languages as an attack vector for industrial con-
trol systems has been actively investigated, especially for PLCs.
Govil et al. [10] present a series of malware for PLCs (written in
IEC61131-3 ladder logic) and built to conceal the malicious code
from human analysis; McLaughlin [16, 17] automatically analyzes
a compromised target to dynamically generate malicious PLC pro-
grams; Klick et al. [13] misuse the network programming features
of programming languages for PLCs to build a network proxy, thus
showcasing how it is possible to perform lateral movement by lever-
aging the primitives exposed by PLC languages. Contrary to these
works that mainly focus on the abuse of programming languages for
PLCs, our work addresses the problem of robot-specific industrial
languages and how robotics programs developed in such languages
can be potentially analyzed for vulnerabilities and abuses.

Taint Analysis. The use of static program-analysis techniques to
find vulnerabilities is a well-studied research area. In particular,
we apply dataflow analysis, a robust program analysis technique
originated in the 1970s [12] and widely applied to several security
problems (e.g., to automatically find vulnerabilities in web applica-
tions [11], privacy leaks in mobile applications [8], or detect mobile
ransomware [4]). General-purpose programming languages rely
on improved and advanced data-flow analysis tools like FlowDroid,
for Android [5], and Phasar [23], for C/C++ applications analysis.
A recent, notable example is Joern [27], which generates a so-called
property graph, stored in a graph-oriented database for efficient
mining of sensitive patterns, potentially leading to vulnerabilities.

ProgramAnalysis for Industrial Languages. Analysis tools for
ICS logic have been developed mainly for quality-assurance pur-
pose or to extract safety-related properties. Cortesi et al. [7] focus
on program verification applied to robotic software, offering an
overview of various static analysis techniques (e.g., model check-
ing, data flow analysis). Zhang et al. [28] analyze the logic of PLCs
and FANUC robot code, to extract invariants for software-testing
purposes. Here, the authors needed to extract only the points of
interaction between the IRPL code and the PLCs, in order to find
safety-critical conditions. Instead, we aim at characterizing the en-
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tire dataflow of a task program to find insecure patterns. Similarly
to our tool, Mandal et al. [14, 15] use static code analysis techniques,
including dataflow analysis on the CFG, to analyze task programs
in a multi-language fashion (including, among the others, ABB
RAPID and IEC 61131-3 PLC languages). However, their focus is
on checking the conformance to coding standards and detecting
common programming mistakes (e.g., infinite loops, division by
zero) that can result in safety violations or generic faults, and they
do not consider resource access, which is crucial for security.

In short, none of the related work consider the security risk
brought forth by the fact that (1) task programs are and will be
no longer isolated, (2) they include powerful security-sensitive
primitives such as those that offer connectivity between robots
and outside world, and (3) have no resource isolation. Hence, to
the best of our knowledge, we believe we are the first to apply
security-oriented static program-analysis techniques to IRPLs, and
successfully detect vulnerabilities in real-world robotics programs.

8 Conclusion

In this paper, we investigated potential security risks introduced by
robotic programs developed in IRPLs. We analyzed the languages
of 8 leading industrial vendors, outlining the presence of sensitive
primitives that can be misused or lead to vulnerabilities, showing
concrete examples. Then, we introduced a prototype source code
static analyzer. With our analyzer, we showed that unsafe patterns
exist in publicly available programs to different extents and, on the
other hand, we proposed such a tool in analyzing and vetting task
programs (e.g., before commissioning or distribution). In the future,
we aim to extend the capabilities of our analyzer on two aspects.
We plan to support other programming languages, possibly beyond
the scope of robotics, for example to program computer numerical
control machines. Also, we aim at introducing context-sensitive
data flow analysis in order to support additional peculiar features
offered by IRPLs, such as interrupt-driven control flow.
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A Example Task Programs

This appendix reports an excerpt of two vulnerable programs. Both
programs allow to command the robot’s movement from the net-
work, thus presenting a “network → movement” vulnerability class.

MODULE GBS (SYSMODULE)

! -- network adapter: https://git.cs.lth.se/mathias/GBS_Robotstudio/

VAR socketdev server_socket;

VAR socketdev client_socket;

VAR num IN_CMD_ID;

! ...

VAR intnum intnumNailer;

VAR intnum intSensorYOK;

VAR intnum intSensorXOK;

!...

PROC GBSReadCommand() ! read command from network

VAR num counter := 1;

IN_PARAMS_NUM := readNumberFromSocket();

IN_CMD_ID := readNumberFromSocket();

WHILE counter <= IN_PARAMS_NUM DO

IN_PARAMS{counter} := readNumberFromSocket();

counter := counter + 1;

ENDWHILE

!set the command status to error and no params

OUT_STATUS := STATUS_OK;

OUT_PARAMS_NUM := 0;

ENDPROC

PROC GBSExecCommand() ! execute movement command

TEST IN_CMD_ID

CASE CMD_READ_PTP: READ_PTP;

CASE CMD_MOVE_PTP: ! ...

ENDTEST

OUT_STATUS := STATUS_OK;

ENDPROC

! ...

PROC rRunGBS() ! main loop

WHILE TRUE DO

TEST GBS_STATUS

CASE 0:

IF (GBSNeedConnection()) THEN

GBSConnectSocket;

ENDIF

! ...

CASE 1:

GBS_STATUS := 2;

GBSExecCommand;

! ...

DEFAULT:

GBSDisconnectSocket;

! ...

ENDTEST

ENDWHILE

ERROR

GBS_STATUS:=0;

GBSDisconnectSocket;

ENDPROC

FUNC num readNumberFromSocket() ! parse number from raw socket

VAR num nval;

VAR rawbytes raw_data;

SocketReceive client_socket \RawData :=

raw_data ReadNoOfBytes:=4\Time:=WAIT_MAX;

UnpackRawBytes raw_data \Network, 1, nval \Float4;

return nval;

! ...

ENDFUNC

PROC writeNumberToSocket(num nval) ! write number to raw socket

! ...

ENDPROC

! ...

ENDMODULE

; ROS-I KUKA adapter: https://github.com/ros-industrial/kuka_experimental

def kuka_eki_hw_interface() ; main function

decl axis joint_pos_tgt

decl int elements_read

bas(#initmov, 0)

eki_hw_iface_init()

joint_pos_tgt = $axis_act_meas

ptp joint_pos_tgt

$advance = 5

loop ; main loop

elements_read = eki_hw_iface_get(joint_pos_tgt)

ptp joint_pos_tgt c_ptp

endloop

end

def eki_hw_iface_init() ; initialize network interface

decl eki_status eki_ret

global interrupt decl 15 when

$flag[1]==false do eki_hw_iface_reset()

interrupt on 15

global interrupt decl 16

when $timer_flag[1]==true do eki_hw_iface_send()

interrupt on 16

wait sec 0.012

$timer[1] = -200

$timer_stop[1] = false

eki_ret = eki_init("EkiHwInterface")

eki_ret = eki_open("EkiHwInterface")

end

def eki_hw_iface_send() ; write data to network socket

decl eki_status eki_ret

decl real vel_percent

if $flag[1] then

eki_ret = eki_setreal(

"EkiHwInterface",

"RobotState/Pos/@A1",

$axis_act_meas.a1)

eki_ret = eki_setreal(

"EkiHwInterface",

"RobotState/Pos/@A2",

$axis_act_meas.a2)

; ...

if $flag[1] then

eki_ret = eki_send(

"EkiHwInterface",

"RobotState")

endif

endif

; ...

end

deffct int eki_hw_iface_available() ; check if there is data form network

decl eki_status eki_ret

; ...

eki_ret = eki_checkbuffer(

"EkiHwInterface", "RobotCommand/Pos/@A1")

return eki_ret.buff

endfct

deffct int eki_hw_iface_get(joint_pos_cmd :out) ; read data from network

decl eki_status eki_ret

decl axis joint_pos_cmd

;...

eki_ret = eki_checkbuffer(

"EkiHwInterface", "RobotCommand/Pos/@A1")

if eki_ret.buff <= 0 then

return 0

endif

; ...

return 1

endfct
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